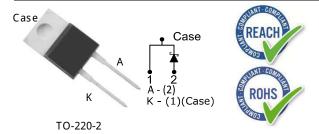
# D/ that { 3t [ tht] 3t [ tht] 3t { 5t [ tht] 4t { 5




## Silicon Carbide Schottky Diode

| $V_{RRM}$                     | = | 1200 V |
|-------------------------------|---|--------|
| $I_{F(Tc = 135 \text{\'eC})}$ | = | 46 A   |
| $Q_{C}$                       | = | 66 nC  |

#### **Features**

- ¿ High Avalanche (UIS) Capability
- ¿ Enhanced Surge Current Capability
- ¿ Superior Figure of Merit Q<sub>C</sub>/I<sub>F</sub>
- ¿ Low Thermal Resistance
- ¿ 175 éC Maximum Operating Temperature
- ¿ Temperature Independent Switching Behavior
- ¿ Positive Temperature Coefficient of V<sub>F</sub>
- ¿ Extremely Fast Switching Speeds

### Package



### Advantages

- ¿ Low Standby Power Losses
- ¿ Improved Circuit Efficiency (Lower Overall Cost)
- ¿ Low S witching Losses
- ¿ Ease of Paralleling without Thermal Runaway
- ¿ S maller Heat S ink R equirements
- ¿ Low Reverse Recovery Current
- ¿ Low Device Capacitance
- ¿ Low Reverse Leakage Current

### **Applications**

- ¿ Boost Diode in Power Factor Correction (PFC)
- ¿ S witched Mode Power Supply (SMPS)
- ¿ Uninterruptible Power Supply (UPS)
- ¿ Motor Drives
- ¿ Freewheeling / Anti-parallel Diode in Inverters
- ¿ Solar Inverters
- ¿ Electric Vehicles (EV) & Charging Stations
- ¿ Induction Heating & Welding

### Absolute Maximum Ratings (At $T_c$ = 25 $\omega$ Unless Otherwise Stated)

| Parameter                                                | Symbol                            | Conditions                                  | Values     | Unit   |   |
|----------------------------------------------------------|-----------------------------------|---------------------------------------------|------------|--------|---|
| Repetitive Peak Reverse Voltage                          | $V_{RRM}$                         |                                             | 1200       | ٧      |   |
|                                                          |                                   | $T_C = 25 \text{ éC}, D = 1$                | 94         |        |   |
| Continuous Forward Current                               | $\mathbf{I}_{F}$                  | $T_C = 135 \text{ éC}, D = 1$               | 46         | Α      |   |
|                                                          |                                   | $T_C = 165 \text{ éC}, D = 1$               | 20         |        |   |
| Non-Repetitive Peak Forward Surge                        | $I_{F,SM}$                        | n-Repetitive Peak Forward Surge $T_C = T_C$ |            | 120    | ٨ |
| Current, Half Sine Wave                                  |                                   | $T_C$ = 150 éC, $t_P$ = 10 ms               | 96         | Α      |   |
| Repetitive Peak Forward Surge Current,<br>Half Sine Wave | $I_{F,RM}$                        | $T_C = 25 \text{ éC}, t_P = 10 \text{ ms}$  | 82         | Α      |   |
|                                                          |                                   | $T_C$ = 150 éC, $t_P$ = 10 ms               | 55         |        |   |
| Non-Repetitive Peak Forward Surge<br>Current             | $I_{\text{F,max}}$                | $T_C = 25 \text{ éC}, t_P = 10 \text{ i s}$ | 1100       | Α      |   |
| i <sup>2</sup> t V alue                                  | li² dt                            | $T_C = 25 \text{ éC}, t_P = 10 \text{ ms}$  | 72         | $A^2s$ |   |
| Non-Repetitive Avalanche Energy                          | E <sub>AS</sub>                   | $L = 1 \text{ mH}, I_{AS} = 20 \text{ A}$   | 220        | mJ     |   |
| Diode Ruggedness                                         | dV/dt                             | V <sub>R</sub> = 0 ~ 960 V                  | 100        | V/ns   |   |
| Power Dissipation                                        | P <sub>tot</sub>                  | T <sub>C</sub> = 25 éC                      | 597        | W      |   |
| Operating and Storage Temperature                        | T <sub>j</sub> , T <sub>stg</sub> |                                             | -55 to 175 | éC     |   |

# D/ 137a t { 34 [131]\* 31371 { (() a t { \$5\$ (() \$0\$) }



## **Electrical Characteristics**

| Parameter               | Cymbol                                     | ol Conditions -                                                 |                                             | Values |      |      | Unit |  |
|-------------------------|--------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|--------|------|------|------|--|
| raiailletei             | Symbol                                     |                                                                 |                                             | Min.   | Тур. | Max. | Onit |  |
| Diodo Forward Voltago   | V-                                         | $I_F = 20.0 \text{ A, T}_j$                                     | $I_F = 20.0 \text{ A}, T_j = 25 \text{ éC}$ |        | 1.5  | 1.8  | V    |  |
|                         | Diode Forward Voltage $V_F$ $I_F$ = 20.0 A |                                                                 | : 175 éC                                    |        | 2    | 2.4  | V    |  |
| Reverse Current         | T_                                         | V <sub>R</sub> = 1200 V, T <sub>j</sub> = 25 éC                 |                                             |        | 1.8  | 18   | ιA   |  |
|                         | ${ m I}_{\sf R}$                           | $V_R = 1200 \text{ V}, T_j = 175 \text{ éC}$                    |                                             |        | 5.4  | 64.8 |      |  |
| Total Consisting Charge | 0                                          |                                                                 | V <sub>R</sub> = 400 V                      |        | 54   |      | nC   |  |
| Total Capacitive Charge | Qc                                         | $I_F H I_{F,MAX}$ $dI_F/dt = 200 A/\approx$                     | $V_R = 800 V$                               |        | 79   |      |      |  |
| S witching Time         |                                            | $T_j = 175 \text{ éC}$                                          | $V_R = 400 \text{ V}$                       |        | < 10 |      | ns   |  |
|                         | ts                                         |                                                                 | $V_{R} = 800 V$                             |        | < 10 |      |      |  |
| Total Capacitance       | C                                          | $V_R = 1 V$ , $f = 1 MHz$ , $T_j = 25 éC$                       |                                             |        | 1298 |      |      |  |
|                         | C                                          | $V_R = 800 \text{ V, } f = 1 \text{ MHz, } T_j = 25 \text{ éC}$ |                                             |        | 83   |      | pF   |  |

# Thermal / Mechanical Characteristics

| Thermal Resistance, J unction - Case | R <sub>thJ C</sub> | 0.22 | éC /W |
|--------------------------------------|--------------------|------|-------|
| Weight                               | W <sub>T</sub>     | 2    | g     |
| Mounting Torque                      | T <sub>M</sub>     | 0.8  | Nm    |

# ろけれい {Of a t { あ5 OLX)T



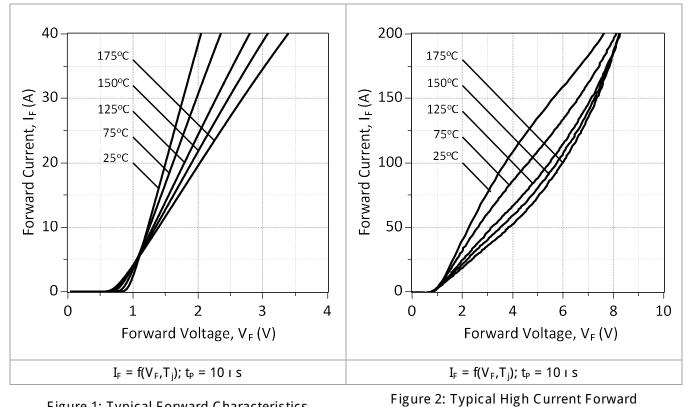



Figure 1: Typical Forward Characteristics

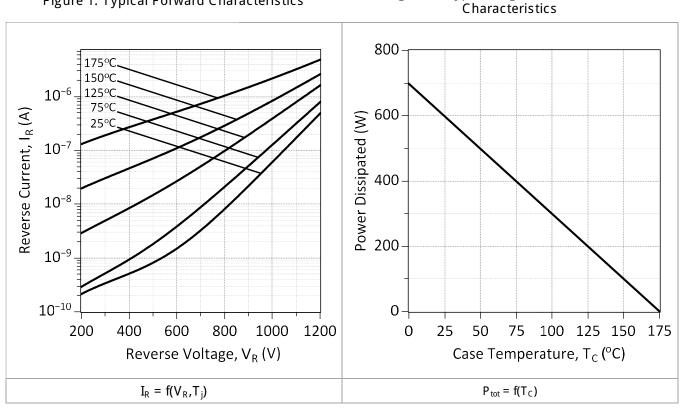



Figure 3: Typical Reverse Characteristics

Figure 4: Power Derating Curve

# D/ 13/2 t { 3 t [ 13/3 ] 31/3 t { (8/3 t { 35 (8/3) }



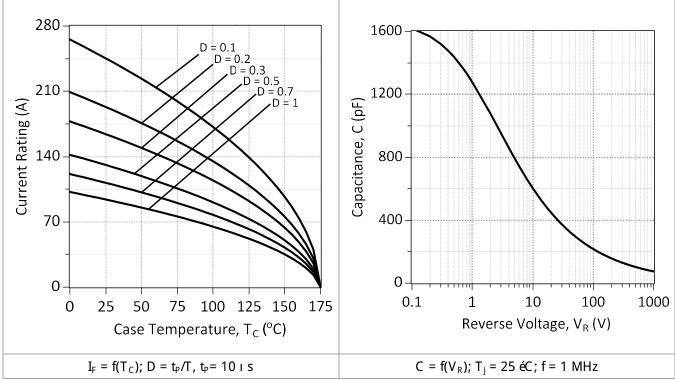



Figure 5: Current Derating Curves( $T_i = 206 \text{ éC}$ )

90 60 Capacitive Charge,  $Q_{c}$  (nC) gStored Energy,  $\mathsf{E}_\mathsf{C}\left(\mathsf{\mu}\mathsf{J}\right)$ 40 20 0 0 0 200 400 600 800 1000 1200 0 200 600 800 1000 1200 Reverse Voltage, V<sub>R</sub> (V) Reverse Voltage, V<sub>R</sub> (V)  $Q_c = f(V_R); T_i = 25 \text{ éC}; f = 1 \text{ MHz}$  $E_C = f(V_R); T_j = 25 \text{ éC}; f = 1 \text{ MHz}$ 

Figure 7: Typical Capacitive Charge vs Reverse Voltage Characteristics

Figure 8: Typical Capacitive Energy vs Reverse Voltage Characteristics

# D/ 13/2 t { 3 t [ 13/3 ] 31/3 t { (8/3 t { 35 (8/3) }






Figure 9: Transient Thermal Impedance

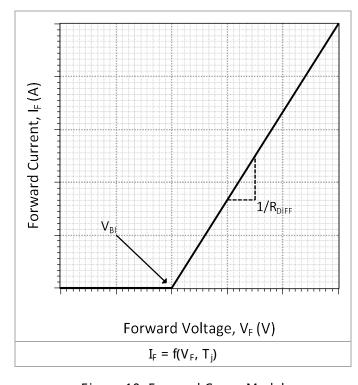



Figure 10: Forward Curve Model

$$I_F = (V_F - V_{BI})/R_{DIFF}(A)$$

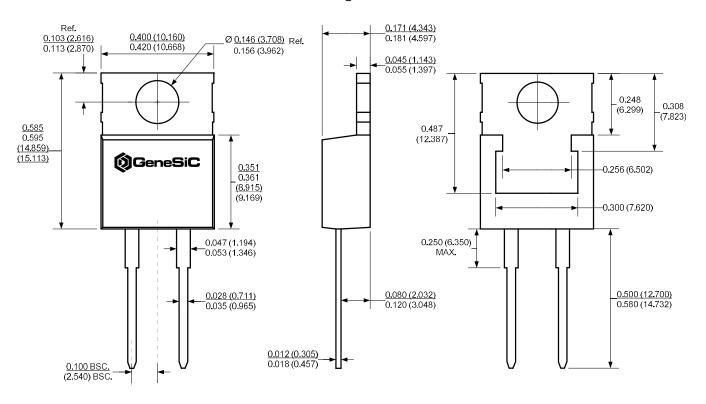
Built-In Voltage (V<sub>BI</sub>):

$$V_{BI}(T_j) = m*T_j + n (V)$$

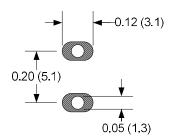
m = -1.64e-03, n = 1.01

Differential Resistance (R<sub>DIFF</sub>):

$$R_{DIFF}(T_j) = a*T_j^2 + b*T_j + c (n);$$
  
  $a = 6.30e-07, b = 1.05e-04, c = 0.0223$ 


# D/ 137a t { 34 [1313] 31371 { (() a t { \$5 (() \$0)}




## Package Dimensions

#### TO-220-2L

#### Package Outline



#### Recommended Solder Pad Layout



#### NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

# D/ 1/20 t { 3/21/1/1/2 } 3/1/10 { (() a t { \$\sigma 5 (() \lambda ) \)



### **RoHS** Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS), as implemented November 15, 2017. RoHS Declarations for this product can be obtained from your GeneSiC representative.

### **REACh Compliance**

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

#### Related Links

- ¿ Soldering Document: http://www.genesicsemi.com/technical-support/quality /
- ¿ Tin-whisker Report: http://www.genesicsemi.com/technical-support/compliance/
- Reliability Report: http://www.genesicsemi.com/technical-support/reliability/

